January 23, 2021
My #Me Too Story (Of a Slightly Different Sort)!
October 09, 2020
Memes, The Pandemic, and All of Us
February 17, 2019
To Publicize or Not: Is That The Question?
I recently published a book titled Understanding Intuition: A Journey In and Out of Science. It explores some foundational intuitions about intuition I experienced and brings them together with a deep dive into the science of intuition. It took me years to write and find a publisher. All told, it was a 2-decade long endeavor. Early in 2018, Academic Press, an imprint of Elsevier, a scientific publisher, issued the work.
July 27, 2008
EMERGENCE AND POTENTIAL SPACE
The word "Emergence" has intrinsic appeal. It immediately leads beyond itself---to a space of potentiality. The world is wide open after that final "e"---or at least sort of. For the most part emergence is evoked after the fact. I hope to look a little more at the space beyond the final e, but first things first.
Emergence provides a way to account for the development of higher life forms and even spirituality without requiring a master plan or planner. Emergence oversimplified means that the whole is greater than the sum of its parts. A portion of its appeal is it provides an alternative to the reductive perspective, which holds that higher levels can be completely explained by lower levels. Thus biology can be completely explained by chemistry and chemistry in turn by physics. Emergence in contrast says that novel properties can appear at higher levels that are essential to complete understanding. It implies there is always something new under the sun---or rather the potential for something new is always there.
I work together on a science and spirituality blog with a Brandeis undergraduate that we call The Bridge: A Science and Spirituality Resource. I took on the task of summarizing an intriguing but challenging article by Terrence Deacon for the blog entitled “Emergence: The Hole at the Wheel's Hub.” At the end of my second time through the 40 page paper I had one of those experiences in which science and spirituality really converged for me. The moment of insight intensified during several subsequent readings. It marked a considerable deepening of my morning meditation and perhaps other aspects of my spiritual life as well.
The primary purpose of Deacon's article was not spiritual, but instead to impart some order to the promiscuous concept of emergence by characterized three different levels. However he brings all three together under the Eastern-seeming concept of absence, a potential shaped by what is not there. He quotes from the Tao Te Ching
Thirty spokes converged at the wheel’s hub to an empty space that makes it useful. Clay is shaped into a vessel, to take advantage of the emptiness it surrounds. Doors and windows are cut into walls of a room so that it can serve so some function. Though we must work with what is there, use comes from what is not there.
First something about the basic idea behind emergence. Thermodynamics tells us that the universe is running downhill and becoming increasingly random. In a state of randomness a change in one direction is balanced by change in the opposite; everything cancels everything else out. How then is life possible, to say nothing of the purposefulness on which we humans so pride ourselves? After all, we are---including our minds---part of nature.
The answer is that the way things fit together---relational properties---instead of a canceling each other out, may, depending on a confluence of events, build on each other. These relational or configural properties are responsible for the spontaneous production of order, such as the formation of whirlpools and also the origins of life. They explain why our organism can turn over most of the physical material it is made of and nonetheless persist.
Deacon’s three levels of emergence represent three critical transitions in the organization of matter. At the first level, higher order properties can emerge when separate elements become an aggregate. (These phenomena can be explained reductively, but including this level provides a complete sweep of the terrain.) For example, when H2O molecules aggregate, the properties of liquidity emerge. Becoming a liquid gives rise to characteristics such as surface tension and different kinds of flow that depend on the molecules’ relationship to each other. Not only H2O but many different kinds of molecules can become liquids. The characteristic behavior associated with liquidity, its “laws,” then become a higher level description of these systems.
The second level transition describes the emergence or self-organization of form. Here first-order emergence becomes unstable. An example is a Benard cell. When a shallow pan of water or other liquid is heated evenly from the bottom, hexagonal convection cells emerge. All different kinds of convection patterns occur initially but they cancel each other out. Only the hexagonal cells survive because their close packing is most efficient at bringing the heat to the surface.
The emergence of form occurs when random fluctuations at a lower level---here water molecules rising to the surface to remove the heat---give rise to relational regularity at higher levels that are beneficial to the system. These beneficial regularities in turn influence the lower levels to support this arrangement---the two work together so only hexagonal cells form. The kind of causality that occurs in these self-organizing systems is decidedly circular. As Deacon puts it, “interaction dynamics at lower levels becomes strongly affected by regularities emerging at higher levels of organization.”
Another example of a self-organizing system is the spontaneous generation of autocatalytic sets. Heterogeneous molecules form together into a cycle where, for example, A catalyzes the formation of B, B catalyzes the formation of C, and C of A. These cycles are very important in cellular metabolism. All that is needed to keep them going is the availability of raw materials and an energy flow through the system.
Check out this video which shows a very sexy autocatalytic cycle called a Belousov-Zhabotinsky Reaction.
With the third transition, some sort of informational memory is present, for example genetic material. This allows emergent forms to be reproduced over and over again. Think of it like a franchise with loose corporate control. Reproduction can then occur over time and even space. This memory is what makes development and evolution possible and by the same token gives a history to the system. The ability of self-organizing forms to reproduce---so their occurrence is no longer dependent on spontaneous self-organization---is arguably where life begins. These systems have a purpose of sorts---to reproduce and undergo change that enhances the possibility of not being canceled out.
These higher-level emergent systems are shaped by absence in several different ways. They are forged not by design, but by what is not canceled out. The forms that arise and then reproduce depend to a large extent on factors external to them, such as their fit with environmental conditions. Life and the mind to which it has given rise---in part because this passive selection goes on---is ever governed by the 'pull of yet unrealized possibility.'
Here is the passage close to the end that showed me how deeply this paper---which at that point I at best barely understood---had gotten to me.
Like something coming out of nothing, the subject of self is, in effect, a constitutive absence for the sake of which new constitutive absence is being incessantly evolved. In this sense, there is some legitimacy to the eliminativist claim that there is 'no thing' that it is. Indeed this must be so. The locus of self is, effectively, a negative mode of existence, that can act as an unmoved mover of sorts: a non-thing that nonetheless is the locus of a form of inertia---a resistance to change--- with respect to which other physical processes can be recruited and organized.
When I read that (the second time through) I had one of those powerful moments of knowing in which I could capture only a little of what was being known. As a student of intuition I suspect these are the best kind. I any case I am happy my unconscious was doing its job.
I felt myself to be a mere input/output tube. There was an intense focus of energy around my mouth, one of the ways into or indeed out of the devise. I enjoyed the minimalism and cleanliness of sensing myself as nothing more than this tube and the energy that served as its gate---of being largely without a self for an instant.
It was an experience of spiritual absence or emptiness, but not the kind of spiritual emptiness that verges on transcending the physical realm. Rather it was an emptiness that was pregnant with the most elementary aspects of human life---of feeding and of speaking, which lent it a hearty, almost animal-like vitality. It was also pregnant with everything I was not worrying about that would take care of itself. Finally it was pregnant with all that would flow through me and I might take in and perhaps transform. I felt very simple and very free. There was just potential space.
June 26, 2008
What is Real? Quantum Physics for Real Dummies
The first time I really comprehended this I found it freaky. I was reading a book by the physicist Richard Feynman, who was my hero at the time. There I was being bombarded by waves of all kind carrying heavens knows what.
It helped me begin to understand a very strange experience I had a number of years before. One night my stereo tuner, which was turned off, started broadcasting music. It seemed to be coming from the back---from one of the connections. I thought the house was inhabited by ghosts. Why it happened then and only then is beyond me.
So much for the warm-up---which is actually a bit of priming. Here comes the quantum physics. Our physical experience is dominated by objects that have more or less clear boundaries, that are separate from each other. Also causality reigns. If I so choose, with my arm I can knock the folder next to my computer off my desk. This follows the laws of classical physics.
But at the quantum level, the level of subatomic particles, most physicists think that it is all chance and randomness. Probabilities rather than certainty or causality are supposed to rule. It is only when an observation is made that the function that determines these probabilities, the wave function, is said to collapse into a specific state. Before that all possibilities are said to coexist or are superimposed.
I highly recommend this video. It is a very clear presentation of the famous double slit experiment that helped demonstrate the very strange things that happen at the subtle atomic level. It is also very entertaining--- worth watching just to enjoy Dr. Quantum's facial expressions!
Not everyone was happy with the randomness that the usual interpretation of quantum mechanics enshrines at the core of reality. Einstein famously said, "God does not play dice." He was not willing to give up the elegant determinism of classical physics. So he proposed that there must be hidden factors, what he called hidden variables, which really control events at the quantum level.
In the 1930s, along with some colleagues, Einstein devised a thought experiment to show that the usual understanding of quantum mechanics is incomplete. It pointed out a paradox. If particles are governed by chance, then some of the predictions of quantum theory would also indicate that particles far apart from each other do not always behave independently. This would be like twins halfway around the universe instantaneously affecting each other. The notion that particles widely separated in space could communicate instantly is extremely problematic because it violates Einstien's own dictum that the speed of light is the fastest any information can travel. Einstein argued that this indicated that the irreducible randomness or chance quantum mechanics seemed to suggest at the base of everything also had to be wrong.
A younger colleague, David Bohm, in the 1950s became interested in developing a deterministic understanding of quantum mechanics. He did not like that the usual interpretation had no underlying theoretical framework. A strongly intuitive physicist, he favored models he could picture or experience at some level. Like Einstein, he also thought it impossible that information could travel instantaneously between particles--- or faster than the speed of light.
His answer was a model in which a quantum potential guides the behavior of particles in a deterministic but holistic way. (Bohm's work built on an earlier attempt by Louis de Broglie in the 30's to provide an alternate explaination.) For example the quantum potential tells the electron whether one or two slits is open--- see above video---and guides it so the observed results occur. The quantum potential is able to this because it contains what Bohm called “active information” about the entire system. In effect, it allows the particle to “just know” the big picture.
Meanwhile in the 60s another physicist named John Bell , influenced by Bohm, proved theoretically that to extend determinism to subatomic particles would necessarily imply what has come to be called non-locality---that particles far apart from each other would have to be connected or communicate at faster than the speed of light . (This is what Einstein could not accept, but 3 decades later it didn't bother Bell) In the 1980s a French team led by Alain Aspect demonstrated non-locality by performing an experiment proposed by Bohm and Bell (based on Einstein's initial thought experiment). Non-locality is sometimes called quantum entanglement, and it is now well accepted by physicist. In fact efforts are underway to exploit quantum entanglement technologically.
Bohm eventually proposed another whole realm, what he called the implicate order, as the source of the quantum potential. In the implicate realm, the two twins halfway around the universe from each other are actually connected. The implicate realm is unfolded or smeared out throughout our level of reality, what Bohm called the explicate order---like those radio waves that somehow caused my turned-off radio to broadcast music. He often used the idea of a hologram, in which every part contains an image of the whole to capture the relationship between the implciate and the explicate realm. But a hologram is static, whereas he saw the process of unfolding and enfolding between the realms going on continuously. He called it holomovement. To get a better sense of his ideas, check out this interview with Bohm.
This talk of other realms did not endear Bohm’s work to mainstream physics. To add insult to injury, he worked closely with the Indian teacher Krishnamurti for many years. Nonetheless a small number of physicists preferred his causal or ontological model and have worked to refine and extend it. It is now called Bohmian mechanics.
Even though the quantum potential reinstates causality, it leaves us with a universe very different from the commonsense world we experience. ( It is important to point out that none of this affects the laws of physics at the macroscopic level, but rather our picture of the subatomic realm.) In what we generally call objective reality, distant objects only affect each other when a signal of some sort, a communication, travels between them. To rescue locality as well as causality the way we usually think of them, like Bohm, we have to accept another level of reality where distant particles really are close together.
This is quite a trade-off! At the same time there is something that rings true about this situation. I mean this in the sense that things very often do seem to turn into their opposites. In any case, all us dummies can take comfort in something Richard Feynman said, "I think it is safe to say that no one understands Quantum Mechanics."
So far there has been no way to test Bohmian mechanics against the usual interpretation of quantum mechanics that claims that randomness rules. Just recently some preliminary data about the density of the early microwave radiation left over from the big bang seems to support Bohmian mechanics---according to Antony Valentini (also see first reference below and very end of post). If it is confirmed, it will cause quite a stir!
Additional Web Information:
Written in the skies: why quantum mechanics might be wrong, 2008, Nature On-Line (It is limted access, but important so I've reproduced the critical paragraphs below).
Quantum Randomness May Not be Random, 2008, New Scientist
David Bohm and the Implicate Order, by David Pratt
Do Deeper Principles Underlie Quantum Uncertainty and Nonlocality? 2005, Science
Interesting short video about the early history of quantum mechanics
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Written in the skies: why quantum mechanics might be wrong
Published online 15 May 2008 Nature doi:10.1038/news.2008.829
Zeeya Merali
'snip'
Almost all measurements of the cosmic microwave background seem to fit well with the predictions of quantum mechanics, says Valentini. But intriguingly, a distortion that fits one of Valentini’s proposed signatures for a failure of quantum mechanics was recently detected by Amit Yadav and Ben Wandelt at the University of Illinois at Urbana-Champaign (see 'Deflating inflation?'). That result has yet to be confirmed by independent analyses, but it is tantalizing, Valentini adds.
“It’s far too early to say that this is definite evidence of a breakdown in quantum mechanics — but it is a possibility,” he says.
Hiranya Peiris, an expert on the cosmic microwave background at the University of Cambridge, UK, is impressed by the new work. “This is a pretty cool new idea,” she says. “Nobody has ever thought of using the cosmic microwave background to look into really fundamental quantum questions — cosmologists just assume that quantum mechanics is correct,” she says.
But Peiris adds that Valentini must now come up with more detailed predictions about the types of distortion that will arise in the cosmic microwave background to convince cosmologists that they are really caused by a breakdown of quantum mechanics. “He has thrown some really exciting ideas out there, but now he needs to do the nitty-gritty calculations,” she says.
June 25, 2008
May 22, 2008
Salmon, Rice, and Peas--and Swiss Chard too
On weekend evenings when I was a child my family often had no-bother meals. One favorite was salmon, rice, and peas all mixed up together. The other was bagels and lox, which we had most Saturday nights. Bagels and lox are of course an ethnic tradition, but salmon, rice and peas seemed to be particular to my family.
The salmon and the peas were canned and the rice was Minute Rice. I can't say I loved the dish then, not like bagels and lox. But it was comfort food.
Over the years, every month or so I have had a yen for salmon rice and peas. I still use canned salmon but I’ve upgraded to frozen peas and longer cooking rice. At first I missed the special sweet, processed taste as well as squishy texture of the canned peas. But it's actually better with frozen peas.
Other than the above changes, I have been pretty faithful to the original recipe. This is not to say it always taste the same. To the contrary it’s not just one dish but a whole family of dishes---at least to my salmon-rice-and-peas-attuned palate. By adjusting the proportion, the salmon can dominate, the peas can dominate, or anything in between. Each of these endless variations can have tends to have subtly different overtones and undertones.
I just throw it together with minimum thought. However I cannot exclude the possibility that my unconscious mind is tailoring the mix to the needs of my palate (or my psyche) for the evening. Intuition can direct our actions whether or not we listen for that inner voice. Of course the best cooking comes about when we listen (see Intuition and Brussels Sprouts---what!?).
After a long abstinence, a few weeks ago it was a salmon rice and peas night. I had an idea for an alteration I just couldn't get out of my mind. My latest culinary enthusiasm is chard. I had a few leaves of chard in the refrigerator (with only one or two good days to go). Breaking all my year of salmon, rice, and peas near-purism, I considered cooking them up and throwing them in.
This was not something to be undertaken lightly. It seemed a sacrilege as well as a boundary crossing sure to have consequences other than the simple success or failure of the dish. Moreover why was I thinking of changing a trio that already played endlessly interestingly together into a quartet? Eventually I recognize that in spite of my careful conscious weighting of the pros and cons, the project was going forward. I started cooking the chard.
I usually do not add the juice from the salmon to the concoction. But chard has a strong taste. To balance it I decided I needed to add the juice as well as the whole can of salmon.
The first bite left me astounded. It was delicious; the flavors were bright and exceptionally well-balanced. But even more than that, it evoked my mother's palate—everything that was good about her cooking—perhaps more than anything I have tasted since her death.
I certainly crossed a boundary. But instead of moving further away from tradition it brought me closer to its core. Looking back, I guess I was never so crazy about salmon rice and peas, because it didn't have the brightness of my mother's weekday food (especially with those can canned peas).
-----------
My mother wasn't a particularly skilled cook, but her food was tasty and she relished eating. She ate slowly and luxuriated in it perhaps more than anyone else I have ever known. All this was permission-giving to me. Learning to cook from Julia Child's Mastering the Art of French Cooking was a prelude to my scientific career.(see Food and the Spirit: Rededicating My Thesis 27 Years Later)
My mother also became interested in the kind of cooking championed by Julia. She however had a severe handicap. She just could not grasp what it meant to sauté something. She was fascinated by the concept and often asked me to explain it to her. She would seem to get it, but a number of months later she would ask me again. She was an intelligent woman, and I was incredulous at her apparent idiocy about the concept of sautéing.
After my experience re-creating the essence of my mother's food, I decided to look up sauté in the dictionary. It says:
To lightly fry in fat in a shallow, open pan—n. [French, "tossed (in a pan)," from the past participle of sauter, to leap, from Old French, from Latin saltara, frequentative of salare (past participle), to leap....]
Food leaping from the pan is a lovely image for sautéing. But I began to see that it is also somewhat problematic of a concept. Leaping is a relative thing—or rather the time of cooking before leaping. I'm not sure we really want sautéed chicken breasts to leap from the pan until the chicken is cooked. We don't want sautéed mushrooms to leap from the pan until they give back their juices.
These legalities—although I can't say exactly how—helped give me some insight into my mother's problem with the concept of sautéing. She sautéed all the time. She just couldn't figure out how it was different from pan frying or browning. She already had categories and she couldn't fit a new one in, especially one that is, like the others, not so well defined.
At some level I suspect her question was less about sautéing than it was about the essence of French cooking. This new technique she thought she could learn—if she could figure out what it meant— just might help situate her in this celebrated cuisine. And indeed Julia does mention a large number of tips in Mastering Vol I, such as high temperature and drying food with a paper towel (Ug, See Intuition and Brussels Sprouts---what!!?). But it wasn’t really a new technique, rather just another name for what my mother on occasion already did.
In contrast I first learned to cook in the context of French cooking. I didn’t pan fry food but did that thing called sauté from the start. Also thanks to Julia, I had much of the context that went with it. I would not be surprised if other women of my mother's age felt the same way about sautéing, but were ashamed to admit it and kept their perplexity to themselves.
----------
My mother's difficulty was that a new word was used for a deeply familiar technique. Something similar can occur when familiar words are used in a new context. This happened to me around my first computer, a Mac. I was profoundly intimidated by frequent reference to “a finder” and to “a chooser.” I felt the same way when somewhat later a computer-savvy colleague said of a computer, “This machine has no security. I have to put some on.” I was dumbfounded. It was clearly important, but security meant men in uniforms. How could you put men in uniforms on a computer?
These words were chosen because they were considered intuitive in the sense of user-friendly. But I didn't know enough about computers (or computers with high-level languages) initially and then the internet to have a context for them. Because they were familiar words used in mysterious contexts, they seemed doubly impenetrable to me--- uncrossable barriers between those who were in the know and those who were not.
Our categories—the way we break the world up into kinds—are essential to our ability to construct meaning and hold onto it. After awhile it becomes hard to rename them, give them new context, or add another ingredient. To be sure “it is hard to teach an old dog new tricks.” But perhaps there is a more subtle lesson to be gleaned as well.
The categories that help one person or group make sense of the world can be different or have different contexts from those of another person or group. Sometimes it takes an act of intuition—along with some compassion for the way we all tend to hold on to familiar meanings—to translate in between. Good things tend to happen when we make the leap!
-------------
Coincidentally, it turns out that the word Salmon is from the same root as sauté. The Latin name for Salmon is Salmo, hence the jumping or leaping fish!
I'd love to hear about your favorite comfort food---with or without embellishment.